کمی سازی تأثیر پارامترهای سطحی و شرایط اقلیمی بر دمای سطح زمین با استفاده از داده های انعکاسی و حرارتی سنجش‌ازدور

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجو کارشناسی ارشد سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده جغرافیا، دانشگاه تهران

2 دانشیار گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده جغرافیا، دانشگاه تهران

3 دانشجوی دکتری سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده جغرافیا، دانشگاه تهران

چکیده

دمای سـطح زمین (LST) برای انواع وسیعی از مطالعات علمی اقلیم ­شناسـی، هیدرولوژی، منابع طبیعی و غیره مورد نیاز است. پارامترهای مختلفی ازجمله جنس مواد تشکیل ­دهنده سطح، شرایط توپوگرافی، شرایط محیطی و میزان تابش رسیده به سطح بر LST تأثیرگذار هستند. هدف از انجام پژوهش حاضر، بررسی تأثیر تغییرات توپوگرافی، شرایط اقلیمی و تابش ورودی بر LST با استفاده از داده ­های انعکاسی و حرارتی سنجش‌ازدور است. در این پژوهش از مجموعه داده­ های انعکاسی و حرارتی ماهواره لندست 8، مدل رقومی ارتفاعی ASTER، محصول بخارآب مودیس (MOD07) برای تاریخ 2 مرداد 1397 و نقشه توپوگرافی و اقلیمی منطقه­­ جنوب استان کرمان استفاده شد. برای محاسبه LST از روش تک کاناله و جهت محاسبه تابش طول‌موج کوتاه و بلند ورودی به سطح، از روش ارائه‌شده در الگوریتم بیلان انرژی سبال استفاده‌ شد. ارتباط بین LST با متغیر­های مستقل ازجمله ارتفاع، شیب، جهت شیب، پوشش گیاهی و تابش ورودی به سطح با استفاده از تحلیل­ های آماری بررسی‌شد. نتایج نشان داد که ضریب همبستگی بین LST و هر یک از پارامترهای مستقل بیشتر از 0.7 می ­باشد. همچنین با بررسی­ های آماری، معنادار بودن نتایج ارتباط بین LST و پارامترهای توپوگرافی، شاخص اختلاف پوشش گیاهی نرمال شده (NDVI) و تابش ورودی در سطح 95 درصد معنادار بود. نتایج بررسی LST در شرایط اقلیمی فراخشک، خشک، نیمه‌خشک، مدیترانه­ ای، نیمه مرطوب و مرطوب بیانگر این است که اقلیم ­های با دمای بالاتر نسبت به اقلیم­ های با دمای پایین­ تر دارای میانگین ارتفاع و NDVI پایین­تر و دارای میانگین تابش طول‌موج بلند ورودی به سطح بالاتری هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Quantifying the effect of surface parameters and climatic conditions on land surface temperature using reflective and thermal remote sensing data

نویسندگان [English]

  • Naeim Mijani 1
  • Saeid Hamzeh 2
  • Mohammad Karimi Firozjaei 3
1 MSc. Student of Remote Sensing and GIS, Faculty of Geography, University of Tehran
2 Assoc. Prof. Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran
3 PhD Student of Remote Sensing and GIS, Faculty of Geography, University of Tehran
چکیده [English]

The land surface temperature (LST) plays a vital role in a wide range of scientific researches including climatology, hydrology, natural resources and etc. There are some determining factors which affect the land surface temperature, such as the kind of surface elements, topography and environmental conditions and also the amount of incoming radiation to the surface. The objective of this study is to investigate the effect of topographic parameters, climatic conditions and downward radiation on land surface temperature using remote sensing data. For this purpose, the Landsat 8 satellite image, ASTER digital elevation model, MODIS water vapor product (MOD07) on 24 July 2018, topography and climate map of Kerman province were used. To calculate the LST and downward shortwave and longwave radiation to surface the single channel and SEBAL energy balance algorithms were used, respectively. Finally, using statistical analysis the relationship between LST and independent variables, including elevation, slope, aspect, vegetation cover index and downward radiation to the surface were studied. The results of the study shown that the correlation coefficient between the LST and each of the independent parameters is more than 0.7. Also, the relationship between LST and topographic, normalized difference vegetation index (NDVI) and downward radiation parameters at the 95% level was significant. The results of the mean of LST values in climatic conditions, including extra-dry, dry, semi-dry, Mediterranean, semi-wet and wet indicate that climates classes with higher LST relative to climates classes with lower LST have means of elevation, NDVI lower and mean longwave downward radiation to surface higher.

کلیدواژه‌ها [English]

  • Land surface temperature (LST)
  • Remote Sensing
  • Normalized difference vegetation index (NDVI)
  • Climate condition
  • Kerman
عسگرزاده، پ.، ع. درویشی بلورانی، ح.  بهرامی و س. حمزه. 1395. مقایسه برآورد دمای سطح زمین در روش‌های تک باندی و چند باندی با استفاده از تصویر لندست 8. نشریه سنجش‌ازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 7(3): 18-29.

کریمی فیروزجایی، م.  و م. کیاورز مقدم. 1395. بررسی ارتباط بین دما، شار تابش خالص با خصوصیات بیوفیزیکی و کاربری اراضی با استفاده از تصاویر ماهواره‌ای لندست 8. نشریه سنجش‌ازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 7(4): 79-96.

کیاورز مقدم، م. 1392. ارائه یک روش اکتشاف منابع زمین‌گرمایی بر مبنای داده‌های سنجش‌ازدور و ادغام آن با داده‌های علوم زمین، رساله دکتری، دانشکده فنی، دانشگاه تهران. 280 صفحه.

هاشمی دره بادامی، س.، ا. نورایی صفت، س. کریمی و س. نظری. 1394. تحلیل روند توسعه جزیره حرارتی شهری در رابطه با تغییر کاربری اراضی/پوشش با استفاده از سری زمانی تصاویر لندست. نشریه سنجش‌ازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 6(3): 15-28.

Chander G, Markham BL, Helder DL. 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113(5): 893-903.

Danielson EW, Levin J, Abrams E. 2003. Meteorology. 2nd edn. McGraw Hill, New York, 380 pp.

Danilina I, Gillespie AR, Balick L, Mushkin A, Smith M, Blumberg D. 2013. Compensation for subpixel roughness effects in thermal infrared images. International Journal of Remote Sensing, 34(9-10): 3425-3436.

Danilina I, Gillespie AR, Balick LK, Mushkin A, O'Neal MA. 2012. Performance of a thermal-infrared radiosity and heat-diffusion model for estimating sub-pixel radiant temperatures over the course of a day. Remote Sensing of Environment, 124: 492-501.

Ding H, Shi W. 2013. Land-use/land-cover change and its influence on surface temperature: a case study in Beijing City. International Journal of Remote Sensing, 34(15): 5503-5517.

Firozjaei MK, Kiavarz M, Nematollahi O, Karimpour Reihan M, Alavipanah SK. 2019. An evaluation of energy balance parameters, and the relations between topographical and biophysical characteristics using the mountainous surface energy balance algorithm for land (sebal). International Journal of Remote Sensing: 1-31.

Ghosh A, Joshi P. 2014. Hyperspectral imagery for disaggregation of land surface temperature with selected regression algorithms over different land use land cover scenes. ISPRS Journal of Photogrammetry and Remote Sensing, 96: 76-93.

Guo G, Wu Z, Xiao R, Chen Y, Liu X, Zhang X. 2015. Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landscape and Urban Planning, 135: 1-10.

Hais M, Kučera T. 2009. The influence of topography on the forest surface temperature retrieved from Landsat TM, ETM+ and ASTER thermal channels. ISPRS Journal of Photogrammetry and Remote Sensing, 64(6): 585-591.

He J, Zhao W, Li A, Wen F, Yu D. 2019. The impact of the terrain effect on land surface temperature variation based on Landsat-8 observations in mountainous areas. International Journal of Remote Sensing, 40(5-6): 1808-1827.

He J, Johnson NC, Vecchi GA, Kirtman B, Wittenberg AT, Sturm S. 2018. Precipitation sensitivity to local variations in tropical sea surface temperature. Journal of Climate, 31(22): 9225-9238.

Jacobson MZ. 2005. Fundamentals of atmospheric modeling. Cambridge University Press, 813 pp.

Jamei Y, Rajagopalan P, Sun QC. 2019. Spatial structure of surface urban heat island and its relationship with vegetation and built-up areas in Melbourne, Australia. Science of The Total Environment, 659: 1335-1351.

Jeganathan C, Hamm N, Mukherjee S, Atkinson PM, Raju P, Dadhwal V. 2011. Evaluating a thermal image sharpening model over a mixed agricultural landscape in India. International Journal of Applied Earth Observation and Geoinformation, 13(2): 178-191.

Jiménez-Muñoz JC, Sobrino JA, Skoković D, Mattar C, Cristóbal J. 2014. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geoscience and Remote Sensing Letters, 11(10): 1840-1843.

Jiménez-Muñoz JC, Sobrino JA. 2003. A generalized single‐channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research: Atmospheres, 108(D22): 1-9.

Kattel DB, Yao T, Panday PK. 2018. Near-surface air temperature lapse rate in a humid mountainous terrain on the southern slopes of the eastern Himalayas. Theoretical and Applied Climatology, 132(3-4): 1129-1141.

Li T, Meng Q. 2018. A mixture emissivity analysis method for urban land surface temperature retrieval from Landsat 8 data. Landscape and Urban Planning, 179: 63-71.

Li X, Wang L, Chen D, Yang K, Xue B, Sun L. 2013. Near-surface air temperature lapse rates in the mainland China during 1962–2011. Journal of Geophysical Research: Atmospheres, 118(14): 7505-7515.

Li Z-L, Tang B-H, Wu H, Ren H, Yan G, Wan Z, Trigo IF, Sobrino JA. 2013. Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131: 14-37.

Liu Y, Noumi Y, Yamaguchi Y. 2009. Discrepancy between ASTER-and MODIS-derived land surface temperatures: terrain effects. Sensors, 9(2): 1054-1066.

Lundquist JD, Chickadel C, Cristea N, Currier WR, Henn B, Keenan E, Dozier J. 2018. Separating snow and forest temperatures with thermal infrared remote sensing. Remote Sensing of Environment, 209: 764-779.

Luo D, Jin H, Bense VF. 2019. Ground surface temperature and the detection of permafrost in the rugged topography on NE Qinghai-Tibet Plateau. Geoderma, 333: 57-68.

Malbéteau Y, Merlin O, Gascoin S, Gastellu J-P, Mattar C, Olivera-Guerra L, Khabba S, Jarlan L. 2017. Normalizing land surface temperature data for elevation and illumination effects in mountainous areas: A case study using ASTER data over a steep-sided valley in Morocco. Remote Sensing of Environment, 189: 25-39.

Meybeck M, Green P, Vörösmarty C. 2001. A new typology for mountains and other relief classes. Mountain Research and Development, 21(1): 34-46.

Minder JR, Mote PW, Lundquist JD. 2010. Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. Journal of Geophysical Research: Atmospheres, 115(D14): 1-13.

Rasmussen MO, Pinheiro AC, Proud SR, Sandholt I. 2010. Modeling angular dependences in land surface temperatures from the SEVIRI instrument onboard the geostationary Meteosat Second Generation satellites. IEEE Transactions on Geoscience and Remote Sensing, 48(8): 3123-3133.

Rolland C. 2003. Spatial and seasonal variations of air temperature lapse rates in Alpine regions. Journal of Climate, 16(7): 1032-1046.

Romaguera M, Vaughan RG, Ettema J, Izquierdo-Verdiguier E, Hecker C, van der Meer F. 2018. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data. Remote Sensing of Environment, 204: 534-552.

Sannigrahi S, Bhatt S, Rahmat S, Uniyal B, Banerjee S, Chakraborti S, Jha S, Lahiri S, Santra K, Bhatt A. 2018. Analyzing the role of biophysical compositions in minimizing urban land surface temperature and urban heating. Urban Climate, 24: 803-819.

Sattari F, Hashim M, Pour AB. 2018. Thermal sharpening of land surface temperature maps based on the impervious surface index with the TsHARP method to ASTER satellite data: A case study from the metropolitan Kuala Lumpur, Malaysia. Measurement, 125: 262-278.

Sobrino JA, Jiménez-Muñoz JC, Sòria G, Romaguera M, Guanter L, Moreno J, Plaza A, Martínez P. 2008. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Transactions on Geoscience and Remote Sensing, 46(2): 316-327.

Taleghani M. 2018. Outdoor thermal comfort by different heat mitigation strategies-A review. Renewable and Sustainable Energy Reviews, 81: 2011-2018.

Verhoest NE, Peters J, De Baets B, De Clercq EM, Ducheyne E. 2012. Influence of topographic normalization on the vegetation index-surface temperature relationship. Journal of Applied Remote Sensing, 6(1): 063518.

Wang F, Qin Z, Li W, Song C, Karnieli A, Zhao S. 2015. An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data. Sensors, 15(1): 304-330.

Wang M, He G, Zhang Z, Wang G, Wang Z, Yin R, Cui S, Wu Z, Cao X. 2019. A radiance-based split-window algorithm for land surface temperature retrieval: Theory and application to MODIS data. International Journal of Applied Earth Observation and Geoinformation, 76: 204-217.

Waters R, Allen R, Tasumi M, Trezza R, Bastiaanssen W. 2002. SEBAL (Surface Energy Balance Algorithms for Land): advanced training and users manual. Department of Water Resources, University of Idaho, Kimberly, 98 pp.

Weng Q, Firozjaei MK, Kiavarz M, Alavipanah SK, Hamzeh S. 2019. Normalizing land surface temperature for environmental parameters in mountainous and urban areas of a cold semi-arid climate. Science of the Total Environment, 650: 515-529.

Weng Q. 2009. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4): 335-344.

Yang Y, Cao C, Pan X, Li X, Zhu X. 2017. Downscaling land surface temperature in an arid area by using multiple remote sensing indices with random forest regression. Remote Sensing, 9(8):789.