مدل سازی رابطه فضای سبز شهری با آلودگی هوا، صوت و دما با استفاده از سنجه های سیمای سرزمین

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری محیط‌زیست، دانشکده منابع طبیعی، دانشگاه تهران

2 استایار گروه مهندسی محیط‌زیست، دانشکده منابع طبیعی، دانشگاه تهران

3 استاد گروه مهندسی محیط‌زیست، دانشکده منابع طبیعی، دانشگاه تهران

4 استادیار گروه ترویج و آموزش کشاورزی، دانشکده اقتصاد و توسعه کشاورزی، دانشگاه تهران

چکیده

فضای سبز نقش مهمی در کیفیت محیط­زیست شهری دارد. هدف این بررسی تعیین رابطه فضای سبز شهری با آلودگی هوا، صوت و دما در شهر تهران با استفاده از سنجه­ های سیمای سرزمین است. بدین منظور، ابتدا نقشه فضای سبز تهیه و به‌روزرسانی شد و سنجه­ های سیمای سرزمین محاسبه شدند. سپس نقشه‌های آلودگی هوا و صوت با استفاده از میانگین داده ­های سالیانه درون‌یابی شدند و نقشه دما نیز با روش رگرسیون تهیه شد. درنهایت اطلاعات موردنیاز از نقشه ­های تهیه‌شده، برای 52 واحد مطالعاتی استخراج شد و با استفاده از رویکرد مدل‌سازی معادلات ساختاری تجزیه‌وتحلیل شدند. نتایج نشان داد که فضای سبز اثر کاهشی بر میزان آلودگی هوا، صوت و دما دارد. بطوریکه به ازای یک واحد افزایش در انحراف‌ معیار فضای سبز، 0.509 واحد در انحراف معیار دما، 0.462 واحد در انحراف معیار میزان آلودگی صوت و همچنین 0.831 واحد در انحراف معیار آلودگی هوا کاهش مشاهده می­ شود. در سازه فضای سبز، شاخص انسجام و تراکم لکه بیشترین نقش و شاخص مساحت کمترین نقش را در کاهش آلودگی هوا، صوت و دما داشت. بیشترین و کمترین میزان اثر کاهشی فضای سبز برسازه آلودگی هوا به ترتیب مربوط به ذرات کمتر از 2.5 میکرون و دی‌اکسید سولفور بود. میزان آلفای کرونباخ 0.807 و ضریـب پایایی مرکب 0.808 نشان‌دهنده پایایـی بالا و میانگیـن واریانـس استخراج‌شده 0.523 نشان‌دهنده روایــی همگرایـی بـالا در سازه آلودگی هوا هستند. در سازه فضای سبز شاخص عامل تورم واریانس نشان‌دهنده عدم خطای هم خطی است.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling the relationships between urban green space, air and noise pollution and temperature using landscape metrics

نویسندگان [English]

  • Shirkou Jaafari 1
  • Afshin Alizadeh Shabani 2
  • Mazaher Moeinaddini 2
  • Afshin Danehkar 3
  • Amir Alambeigi 4
1 Ph.D Student of Environment, Department of Natural Resources, University of Tehran
2 Assis. Prof. College of Environmental Science, Department of Natural Resources, University of Tehran
3 Prof. College of Environmental Science, Department of Natural Resources, University of Tehran
4 Assis. Prof. College of Economics and Agricultural Development, Department of Agricultural Extension and Education, University of Tehran
چکیده [English]

Green space has an important role in the quality of urban environments. The purpose of this study was to investigate the relationships between urban green space, air and noise pollution and temperature in Tehran using landscape metrics approach. For this purpose, the green space map was prepared and updated and then landscape metrics were calculated. Then, through interpolated of annual mean data, the air and noise pollution maps were extracted, while the temperature map was prepared by the regression method. Finally, the required information from the prepared maps was extracted for 52 study units and was analyzed using structural equations modelling. The results indicated green space has a decreasing effect on air and noise pollution and temperature. As per unit increase in standard deviation of green space, 0.509 units in the standard deviation of temperature, 0.462 units in the standard deviation of noise pollution and also 0.831 units in the standard deviation of air pollution decrease were observed. For green space construct, the indices of cohesion and patch density had the highest role and the area index had the lowest role in decreasing air and noise pollution and temperature. The highest and lowest amounts of green space construct effect on the air pollution were related to particles less than 2.5 microns and sulfur dioxide, respectively. The Cronbach's Alpha value was 0.807 and the Composite Reliability coefficient of 0.808 indicates high reliability and Average Variance Extracted of 0.523 represents a high convergence validity in the air pollution constructs. In the green space construct, the variance inflation factor value indicates a noncollinearity error.

کلیدواژه‌ها [English]

  • green space
  • Landscape metrics
  • structural equation modeling
  • air pollution
 

اصغری مقدم، ا.، و. نورانی و ع. ندیری. 1388. پیش‌بینی زمانی و مکانی سطح آب‌های زیرزمینی در محدوده متروی شهر تبریز با استفاده از مدل کریجینگ عصبی. تحقیقات منابع آب ایران، 13(1): 14- 24.

دانه‌کار، ا. و ش. جعفری. 1396. ارزیابی تخریب منطقه حفاظت‌شده جاجرود با استفاده از مدل تخریب سیمای سرزمین. مجله سنجش‌ازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 8(2): 17-32.

رحیمی، ا.، ع. ماهینی، ح. میرکریمی، ح. کامیاب و س. سلطانیان. 1395. مقایسة وضوح مکانی تصاویر اسپات و لندست در تعیین تکه‌تکه شدگی سیمای سرزمین. مجله سنجش‌ازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 7(1): 13-25.

رضائی، ع. و ا. سلطانی. 1383. مقدمه‌ای بر تحلیل رگرسیون کاربردی. چاپ اول، مرکز نشر دانشگاه صنعتی اصفهان. 310  صفحه.

کاظم، ا.، ف. ‌حسینعلی و ع. آل‌شیخ. 1394. مدل‌سازی رشد شهری با استفاده از تصاویر ماهواره‌ای متوسط مقیاس و مبتنی بر روش خودکاره‌های سلولی (مطالعة موردی: شهر تهران). فصلنامه اطلاعات جغرافیایی، 24(94): 45-58.

کامیاب، ح. و ع. ماهینی. 1393. الگوهای مکانی- زمانی تغییرات سیمای سرزمین و توسعه شهری (مطالعة موردی: گرگان). مجله سنجش‌ازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 5(2): 15-24.

Ariza-Villaverde AB, Jimenez-Hornero FJ, De Rave EG. 2014. Influence of urban morphology on total noise pollution: Multifractal description. Science of the Total Environment, 472(15): 1–8.

Attwell K. 2000. Urban land resource and urban planting case studies from Denmark. Landscape and Urban Planning, 52(2): 145– 163.

Beatley T. 2000. Green urbanism: learning from European cities. Island Press, Washington DC, USA. 491 pp.

Beyer KMM, Kaltenbach A, Szabo A, Bogar S, Nieto FJ, Malecki KM. 2014. Exposure to neighborhood green space and mental health: evidence from the survey of the health of Wisconsin. International Journal of Environmental Research and Public Health, 11(3): 3453-3472.

Binford MW, Buchenau MJ. 1993. Ecology of Greenways. University of Minnesota Press, Minneapolis, USA. 222 pp.

Botequilha A, Ahren J. 2002. Applying landscape ecological concepts and metrics in sustainable landscape planning. Landscape and urban planning, 59(2): 65-93.

Bottalico F, Chirici G, Giannetti F, Marco AD, Nocentini S, Paoletti E, Salbitano F, Sanesi G, Serenelli C, Travaglini D. 2016. Air pollution removal by green infrastructures and urban forests in the city of Florence. Agriculture and Agricultural Science Procedia, 8(1): 243 – 251.

Carugno M, Consonni D, Bertazzi PA, Biggeri A, Baccini M. 2017. Temporal trends of PM10 and its impact on mortality in Lombardy, Italy. Environmental Pollution, 227(1): 280-286.

Conine A, Xiang WN, Young J, Whitley D. 2004. Planning for multi-purpose greenways in Concord, North Carolina. Landscape and Urban Planning, 68(2-3): 271–287.

Cook E, Vanlier A, Hubert N. 1994. Landscape Planning & Ecological Networks. Elsevier, Amsterdam, Netherlands. 354 pp.

Fang D, Wang Q, Li H, Yu Y, Lu Y, Qian X. 2016. Mortality effects assessment of ambient PM2.5 pollution in the 74 leading cities of China. Science of the Total Environment, 569–570(1): 1545–1552.

Forman R, Gordon M.1986. Landescape Ecology. John Wiley, New York, USA. 620 pp.

Gascon M, Triguero-Mas M, Martinez D, Dadvand P, Forns J, Plasencia A, Nieuwenhuijsen MJ. 2015. Mental health benefits of long-term exposure to residential green and blue spaces: a systematic review. International Journal of Environmental Research and Public Health, 12(4), 4354-4379.

Gobster PH, Westphal LM. 2004. The human dimensions of urban greenways: planning for recreation and related experiences. Landscape and Urban Planning, 68(2-3): 147-165.

Grace JB, Anderson TM, Olff, H, Scheiner SM. 2010. On the specification of structural equation models for ecological system. Ecological Monographs, 80(1): 67–87.

Grace JB, Pugesek B. 1997. A structural equation model of plant species richness and its application to a coastal wetland. American Naturalist, 149(3): 436–460.

Groot RSD. 1994. Environmental functions and the economic value of natural ecosystems. Island Press, Washington DC, USA. 504 pp.

Gunderson LH, Holling CS. 2002. Panarchy: understanding transformations in human and natural systems. Island Press, Washington DC, USA. 507 pp.

Howard E. 1965. Garden cities of tomorrow. MIT Press, New York, USA. 168 pp.  

Klingberg J, Broberg M, Strandberg B, Thorsson P, Pleijel H. 2017. Influence of urban vegetation on air pollution and noise exposure a case study in Gothenburg, Sweden. Science of the Total Environment, 599–600(4): 1728–1739.

Kshama G, Kumar GP, Pathan SK, Sharma KP. 2012. Urban neighborhood green index a measure of green spaces in urban areas. Landscape and Urban Planning, 105(3): 325–335.

Lanki T, Siponen T, Ojala A, Korpela K, Pennanen A, Tiittanen P, Tsunetsugu Y, Kagawa T, Tyrvainen L. 2017. Acute effects of visits to urban green environments on cardiovascular physiology in women: A field experiment. Environmental Research, 159(1): 176–185.

Lausch A, Herzog F. 2002. Applicability of landscape metrics for the monitoring of landscape change: issues of scale, resolution and interpretability. Journal of Ecological Indicators, 2(1-2): 3-15.

McCarty J, Kaza N. 2015.  Urban form and air quality in the United States. Landscape and Urban Planning, 139(7): 168–179.

McHarg IL. 1969.  Design with nature. American museum of natural history Press, New York, USA. 198 pp.

Ndubisi F. 1997. Landscape ecological planning. Wiley, New York, USA. 944 pp.

Newman PW. 1999. Sustainability and cities: extending the metabolism model. Landscape and Urban Planning, 44(4): 219-226.

Rees W, Wackernagel M. 1996. Urban ecological footprints: Why cities cannot be sustainable- and why they are a key to sustainability. Environmental Impact Assessment Review, 16(4): 223-248.

Rush B, McDermid RC, Celi, LA, Walley KR, Russell JA, Boyd J. 2017. Association between chronic exposure to air pollution and mortality in the acute respiratory distress syndrome. Environmental Pollution, 224(3): 352-356.

Sakieh Y, Jaafari S, Ahmadi M, Danekar A. 2017. Green and calm: Modeling the relationships between noise pollution propagation and spatial patterns of urban structures and green covers. Urban forestry and urban greening, 24(1): 195-211.

Shen YS, Lung SCC. 2016. Can green structure reduce the mortality of cardiovascular diseases?. Science of the Total Environment, 566-567(1): 1159-1167.

Shen YS, Lung SCC. 2017. Mediation pathways and effects of green structures on respiratory
mortality via reducing air pollution. Scientific reports, 7(42854): 1-9.

Stone B. 2008. Urban sprawl and air quality in large us cities. Journal of Environmental Management, 86(4), 688–698.

Weber N, Dagmar H, Ulrich F. 2014. Assessing modelled outdoor traffic-induced noise and air pollution around urban structures using the concept of landscape metrics. Landscape and Urban Planning, 125(1): 105–116.

Ying Z, Ning LD, Xin L. 2015. Relationship between built environment, physical activity, adiposity, and health in adults aged 46–80 in Shanghai, China. Journal of Physical Activity and Health, 12(4): 569-78.

Yu XJ, Ng CN. 2007. Spatial and temporal dynamics of urban sprawl along two urban–rural transects: a case study of Guangzhou, China. Landscape and Urban Planning, 79(1): 96–109.

Zhou ZX, Shao TY, Tang WP, Wang PC, Liu  XQ, Xu YR. 2004. The different urban green-land spatial patterns and their environmental effects: a case of the central district of Yichang city, Hubei Province. Acta Ecologica Sinica, 24(2): 186–92.