پایش و پیش بینی روند تغییرات کاربری اراضی با استفاده از مدل زنجیره مارکوف و مدلساز تغییر کاربری اراضی (مطالعة موردی: دشت برتش دهلران، ایلام)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مربی دانشکده کشاورزی، دانشگاه پیام نور

2 دانشجوی دکتری مهندسی آب، دانشگاه فردوسی مشهد

چکیده

امروزه مدل­سازی و پیش­بینی تغییرات کاربری اراضی با استفاده از تصاویرماهواره­ای می­تواند ابزار بسیار مفیدی برای تشریح روابط متقابل بین محیط طبیعی و فعالیت­های انسانی، برای کمک به تصمیم­گیری برنامه­ریزان در شرایط پیچیده باشد. روش­های متنوعی برای پیش­بینی تغییرات پوشش و کاربری اراضی وجود دارد که از جمله آنها می­توان به مدل زنجیره­ای مارکوف اشاره کرد. در تحقیق حاضر، تغییرات کاربری اراضی در دشت برتش شهرستان دهلران واقع در استان ایلام به وسعت 135244 هکتار در سه دورة زمانی (1988، 2001 و 2013) تصاویر ماهواره لندست، تهیه نقشه کاربری اراضی در شش کلاس (جنگل کم­تراکم، مرتع متوسط، مرتع فقیر، کشاورزی، رسوبات آبرفتی و اراضی بدون پوشش) با استفاده از طبقه­بندی شبکه عصبی کوهونن و همچنین به کارگیری مدل پیش­بینی مارکوف و رویکرد مدلساز تغییر کاربری اراضی LCM (Land Change Modeler)‌ تغییرات کاربری اراضی برای سال 2030 پیش­بینی شد. نتایج طبقه­بندی نشان­دهنده تخریب و کاهش میزان وسعت اراضی جنگل کم­تراکم و مرتع متوسط و افزایش مساحت سایر کاربری می­باشد. کاهش وسعت پوشش جنگل کم­تراکم و مراتع متوسط و روند افزایشی سایر کاربری­ها بیانگر تخریب کلی در منطقه و جایگزینی کاربری­های ضعیف­تر در منطقه است. در پایان با بکارگیری مدل پیش­بینی مارکوف و رویکرد مدلساز LCM تغییرات کاربری اراضی برای سال 2030 پیش­بینی شد. نتایج حاصل از ماتریس پیش­بینی تغییرات بر مبنای نقشه­های سال­های 2001 و 2013 نشان داد که احتمال می­رود در فاصلة زمانی 2030-2013، 45% جنگل کم­تراکم، 71% مرتع متوسط، 96% مرتع فقیر، 81% کشاورزی، 93% رسوبات آبرفتی و 100% اراضی بدون پوشش بدون تغییر باقی بمانند، که اراضی بدون پوشش دارای بالاترین پایداری و از طرف دیگر جنگل کم­تراکم کمترین پایداری را خواهند داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Monitoring and forecasting of land use change by applying Markov chain model and land change modeler (Case study: Dehloran Bartash plains, Ilam)

نویسندگان [English]

  • Seyed Reza Mir Alizadehfard 1
  • Seyedeh Maryam Alibakhshi 2
1 Lecturer, College of Agricultural Sciences, Payam Noor University
2 PhD. Student of Water Engineering, Ferdowsi University of Mashhad
چکیده [English]

Nowadays modeling and forecasting of land use changes by application of satellite images can be a very useful tool for describing relations between natural environment and human activities to help planners to make decisions in complicated conditions. There are various methods for forecasting of land uses and coverage, in which the Markov chain model is one of them. In this research, land use changes in Bartash plain in Dehloran which is located in Ilam province in the area of 135244 hectares in 3 time periods (1988, 2001 and 2013) of landSat satellite images, providing land use map in 6 classes (low density forest, medium-dense grassland, poor grassland, agricultural, alluvium sediments and non-vegetated lands) by application of  Kohonens neural network and also Markov anticipation model and Land change modeler (LCM) approach was predicted for the year 2030. The classification results showed the rate of demolition and a reduction of the area of low density forests and medium grassland land uses and increase in area of other land uses. Reduction of low density forest and the medium grassland area and increasing growth of other land uses demonstrated the overall destruction in the region and replaced with poorer land uses. At the end, by application of the Markov chain model and LCM modeling approach, land use changes were a forecasted for the year 2030. The results of changes anticipation matrix based on maps of years 2001 and 2013 showed that it is likely that in the period of 2013-2030, 45% of low density forest, 71% of medium grassland, 96% of poor grassland, 81% of agricultural lands, 93% alluvialvium sediments and 100% of non-vegetated lands remain changeless; non-vegetated lands have the most stability and low density forest have the least stability.

کلیدواژه‌ها [English]

  • Monitoring
  • forecasting
  • Markov Model
  • Land change modeler (LCM)
  • Bartash plain

1. اسلمی، ف.، ا. قربانی، ب. سبحانی و م. پناهنده. 1393. مقایسه روش­های شبکه عصبی مصنوعی، ماشین بردار پشتیبانی و شی­گرا در استخراج کاربری و پوشش اراضی از تصاویر لندست 8. سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 6(3): 1-14.

2. عزیزی قلاتی، س.، ک. رنگزن، ج. سدیدی، پ. حیدریان و ا. تقی­زاده. 1395. پیش­بینی روند تغییرات مکانی کاربری اراضی با استفاده از مدل زنجیرة مارکوف-CA (مطالعة موردی: منطقه کوهمره سرخی استان فارس). سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 7(1): 59-71.

3. علی­محمدی، ع.، ع. ج. موسیوند و س. شایان. 1389. پیش­بینی تغییرات کاربری اراضی و پوشش زمین با استفاده از تصاویر ماهواره­ای و مدل زنجیره­ای مارکوف. برنامه­ریزی و آمایش فضا، 14(3): 117-130.

4. غلامعلی­فرد. م.، م. میرزایی و ش. جورابیان شوشتری. 1393. مدل­سازی تغییرات پوشش اراضی با استفاده از شبکه عصبی مصنوعی و زنجیرة مارکف (مطالعة موردی: سواحل میانی استان بوشهر). سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 5(1): 61-74.

5. فتحی­زاد، ح.، ح. کریمی، م. تازه و م. توکلی. 1393. پیش‌بینی تغییر کاربری اراضی و پوشش زمین با بهره­گیری از داده‌های ماهواره‌ای و مدل زنجیره‌ای مارکوف (بررسی موردی: حوضة دویرج، استان ایلام). مدیریت بیابـان، 2(3): 61-76.

6. فلاحتکار، س.، ع. سفیانیان، س. ج. خواجه­الدین و ح. ضیایی. 1388. بررسی توانایی مدل CA مارکوف در پیش­بینی نقشه پوشش اراضی شهر اصفهان. همایش ملی ژئوماتیک، تهران، سازمان نقشه­برداری کشور. 20 الی 21 اردیبهشت ماه.

7. Baker WL. 1989. A review of models of landscape change. Landscape Ecology, 2(2): 111-133.

8. Balzter H. 2000. Markov chain models for vegetation dynamics. Ecological Modelling, 126(2): 139-154.

9. Brown DG, Pijanowski BC, Duh J. 2000. Modeling the relationships between land use and land cover on private lands in the Upper Midwest, USA. Journal of Environmental Management, 59(4): 247-263.

10. Fan F, Weng Q, Wang Y. 2007. Land use and land cover change in Guangzhou, China, from 1998 to 2003, based on Landsat TM/ETM+ imagery. Sensors, 7(7): 1323-1342.

11. FAO. 2007. State of the world’s forest, Food and Agriculture Organization of the United Nations, Rome, 144 pp.

12. Gilks W R, Richardson S, Spiegel halter D J. 1996. Markov Chain Monte Carlo in Practice.  Chapman and Hall/CRC; Softcover reprint of the original 1st ed., 512 pp.

13. Guan D, Gao W, Watari K, Fukahori H. 2008. Land use change of Kitakyushu based on landscape ecology and Markov model. Journal of Geographical Sciences, 18(4): 455-468.

14. Guan D, Li H, Inohae T, Su W, Nagaie T, Hokao K. 2011. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling, 222(20): 3761-3772.

15. Hathout S. 2002. The use of GIS for monitoring and predicting urban growth in East and West St Paul, Winnipeg, Manitoba, Canada. Journal of Environmental Management, 66(3): 229-238.

16. Hoffmann M. 2005. Numerical control of Kohonen neural network for scattered data approximation. Numerical Algorithms, 39(1-3): 175-186.

17. Jenerette GD, Wu J. 2001. Analysis and simulation of land-use change in the central Arizona–Phoenix region, USA. Landscape Ecology, 16(7): 611-626.

18. Khoi D, Murayama Y. 2011. Modeling Deforestation Using a Neural Network- Markov Model. Spatial Analysis and Modeling in Geographical Transformation Process. Volume 100 of the series GeoJournal Library, 169-190.

19. Kohonen T. 1996. Self-organization and associative memory, Springer-Velag, 3rd Edition. 312 pp.

20. Lambin EF. 1997. Modelling and monitoring land-cover change processes in tropical regions. Progress in Physical Geography, 21(3): 375-393.

21. Mubea K, Ngigi T, Mundia C. 2011. Assessing application of Markov chain analysis in predicting land cover change: a case study of Nakuru Municipality. Journal of Agriculture Science and Technology, 12(2): 126-144.

22. Muller MR, Middleton J. 1994. A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landscape Ecology, 9(2): 151-157.

23. Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman P. 2003. Multi-agent systems for the simulation of land-use and land-cover change: a review. Annals of the association of American Geographers, 93(2): 314-337.

24. Stephenne N, Lambin E. 2001. A dynamic simulation model of land-use changes in Sudano-sahelian countries of Africa (SALU). Agriculture, Ecosystems & Environment, 85(1): 145-161.

25. Tudun-Wada M, Tukur Y, Hussaini Y, Sani M, Musa I, Lekwot V. 2014. Analysis of forest cover changes in Nimbia Forest Reserve, Kaduna State, Nigeria using geographic information system and remote sensing techniques. Journal of Environment and Earth Science, 4(21): 73-83.

26. Weng Q. 2002. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. Journal of Environmental Management, 64(3): 273-284.

27. Wu Q, Li H-q, Wang R-s, Paulussen J, He Y, Wang M, Wang B-h, Wang Z. 2006. Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landscape and Urban Planning, 78(4): 322-333.

28. Zubair AO. 2006. Change detection in land use and land cover using remote sensing data and GIS, (A case study of Ilorin and its environs in Kwara State), The department of Geography, University of Ibadan in Partial Fulfillment for the award of master of science, 44 pp.